TP: extraction acide citrique d'un jus de citron

Le jus de citron contient essentiellement trois acides : 95 % de l'acidité totale du jus est dû à l'acide citrique ; les deux autres acides minoritaires sont l'acide malique et l'acide ascorbique. L'acide citrique est très présent dans les citrons, les cerises, le raisin ; il est également présent dans le sang à raison de 25 mg/L.

Sa formule semi-développée est la suivante :

$$\begin{array}{c} \text{COOH} \\ \text{HOOC---CH}_2\text{----COOH} \\ \text{OH} \end{array}$$

Il est utilisé en tant qu'antioxydant dans les boissons gazeuses sous le sigle E330 ; il est présent dans les cosmétiques et les shampooings à base de fruits.

Ce TP propose une extraction de l'acide citrique contenu dans un jus concentré de citron puis le dosage de l'extrait .

Vous porterez des gants et des lunettes pendant tout le TP!

 $pKa_3 = 6.4$

Données :

Constantes d'acidité:

 $NH_4^+ / NH_3 : pKa = 9.2$

zone de virage de la phénolphtaléine :

masses molaires en g/mol:

H:1 C:12 O:16

Densité de l'acétate d'éthyle : 0,9

I) Extraction de l'acide citrique présent dans un jus concentré de citron

- Placer de l'eau chaude (environ 60°C) dans un cristallisoir de manière à réaliser un bain marie (prendre de l'eau déjà chaude)
- Prélever précisément 50 mL de jus de citron et le verser dans un erlenmeyer de 250 mL.
- Verser une solution d'ammoniac concentrée dans le jus de citron prélevé; l'ammoniaque concentrée est placée sous une hotte ventilée; prélever environ l'équivalent de trois pipettes pasteurs d'ammoniaque concentrée; la solution devient jaune orangée. Vérifier la valeur du pH notée pH₁ à l'aide de papier pH; indiquer la valeur de pH₁ dans le compte-rendu.
- Ajouter alors environ 40 mL d'une solution de chlorure de calcium (40% en masse) et un barreau aimanté puis placer l'erlen dans le bain marie; agiter pendant environ 20 minutes; l'erlen sera maintenu à l'aide d'une pince pendant l'agitation.

Pendant ce temps, commencer à répondre aux questions du compte-rendu

- Au bout de 20 minutes un précipité est apparu ; retirer l'erlen du bain marie et refroidir la solution rapidement sous l'eau froide du robinet. Verser la solution et le précipité sur le verre fritté (ou büchner) ; récupérer le reste de précipité contenu dans l'erlen avec un peu de solution de chlorure de calcium.
- Filtrer sous vide; recueillir le maximum de précipité à l'aide d'une spatule; placer ce solide dans un bécher de 100 mL. Arrêter la trompe à vide puis laver la fiole à vide à l'eau; replacer le verre fritté sur la fiole.
- Prélever environ 40 mL d'une solution aqueuse d'acide sulfurique de concentration 2 mol/L et verser cette solution dans le verre fritté qui contient encore un peu de précipité; gratter le précipité à l'aide d'une spatule puis filtrer la solution sous vide.

Attention : pour cette opération il faut éviter les retours d'eau ! NB : débrancher le tuyau relié à la fiole à vide avant de couper l'eau.

- Verser le filtrat dans le bécher qui contient la majorité du précipité et agiter doucement à l'aide de la spatule ; la solution devient laiteuse.
- Laver à nouveau la fiole à vide à l'eau puis replacer le verre fritté sur la fiole. Filtrer sous vide la solution laiteuse. Attention aux retours d'eau!
- Verser le filtrat dans le bécher de 100mL et vérifier la valeur du pH notée pH₂ à l'aide de papier pH; indiquer la valeur de pH₂ dans le compte-rendu.
- Saturer cette solution en sel en agitant vigoureusement à l'aide d'un barreau magnétique et d'un agitateur magnétique pendant cinq minutes. Filtrer l'excédent de sel à l'aide d'un entonnoir et de papier filtre puis placer ce filtrat dans une ampoule à décanter de 250 mL.

- Verser 20 mL d'acétate d'éthyle dans l'ampoule; boucher; agiter; dégazer; ôter le bouchon et séparer les deux phases (aide : répondre à la question 12 du compte-rendu avant de procéder à la séparation des phases); remarque : du sel peut précipiter lors de l'ajout de l'acétate d'éthyle.
- Placer la phase organique dans l'erlen de 250 mL propre et sec.
- Recommencer deux fois cette opération avec la phase aqueuse; regrouper les phases organiques dans l'erlen de 250 mL puis sécher la phase organique en plaçant 3 à 4 spatules de sulfate de magnésium sec et en agitant manuellement l'erlen bouché pendant quelques minutes.
- Attention : dans le laboratoire, nous ne possédons qu'un seul évaporateur rotatif, en conséquence de quoi, les solutions seront regroupées par lots de 5
- Peser le ballon à évaporation et son support puis noter la masse m1 dans votre compte-rendu.
- Filtrer la solution contenant le sulfate de magnésium directement sur le ballon à évaporation puis éliminer l'acétate d'éthyle en le distillant à l'évaporateur rotatif.
- Après la distillation, peser le ballon contenant l'acide citrique et le même support; noter la masse m_2 dans le compte-rendu.

II) Dosage du produit extrait

Préparation de la solution pour 5 groupes :

- Verser environ 100 mL d'eau distillée dans le ballon à évaporation et agiter manuellement de manière à dissoudre totalement l'acide citrique extrait dans l'eau puis placer cette solution dans une fiole jaugée de 500 mL.
- Rincer à nouveau le ballon à l'aide d'environ 100 mL d'eau distillée; verser également cette solution dans la fiole jaugée puis compléter la fiole avec de l'eau distillée jusqu'au trait de jauge; homogénéiser la solution ainsi préparée.

Dosage, pour chaque groupe:

- Placer dans un erlen, 20 mL **précis** de cette solution; ajouter un peu de phénolphtaléine et un barreau magnétique.
- Remplir la burette avec la solution de soude de concentration 0,010 mol/L et réaliser le dosage de l'acide citrique présent dans les 20 mL prélevés en agitant. Noter la valeur du volume équivalent Ve₁ dans le compte-rendu.
- Réaliser un deuxième dosage plus précis et noter la valeur du 2^{ème} volume équivalent Ve₂ dans le compte-rendu.

NOM:	
PRENO!	W :
LYCEE :	:

Compte-rendu de TP

I)	Extraction	de	l'acide	citrique	présent	dans un	jus	concentré	de	citron
----	------------	----	---------	----------	---------	---------	-----	-----------	----	--------

1)	Donner la formule brute de l'acide citrique puis calculer sa masse molaire.			
	Formule brute :	1	Masse molaire :	
2)	• •	re schématisé par la formule do-basiques liées aux 3 pKa; :	H₃A, donner alors les formules d	des composés des
		nKa 31 : acide :	hasa :	

pKa₁ = 3,1 : acide : base :

pKa₂ = 4,8 : acide : base :

pKa₃ = 6,4 : acide : base :

3) Tracer sur une échelle de pH le domaine de prédominance des espèces acido-basiques associées à l'acide citrique, en utilisant la notation des questions ci-dessus.

_____**p**H

4) Après l'ajout d'ammoniaque concentrée dans le jus de citron , le pH mesuré est :

pH₁ =

A ce pm1, sous quelle forme acido-basique se trouve lacide crimque?					
que et qui produit					
donner l'équation-					

11) Donner alors l'équation bilan de la réaction q précipité de citrate de calcium.	ui a lieu entre la solution aqueuse d'acide sulfurique et le
12) Lors de la séparation des phases dans l'ampo justifier la réponse.	oule à décanter, préciser où se trouve la phase organique ;
13) Pourquoi a-t-on salé la phase aqueuse ?	
14) masse ballon + support :	$m_1 =$
masse ballon + support + acide citrique : (pour 5 groupes)	m ₂ =
En déduire la masse m d'acide citrique extra	it <u>dans les 50 mL</u> de jus de citron :
	m =
II) Dosage du produit extrait	
1) valeurs des volumes équivalents :	
Ve ₁ =	Ve ₂ =

2)	Lors du virage de la phénolphtaléine, sous quelle forme acido-basique se trouve l'acide citrique?
3)	En déduire l'équation-bilan de la réaction qui a lieu entre l'acide citrique et la soude.
4)	Calculer la quantité de matière d'acide citrique pur présent dans les 20 mL prélevés.
5)	Calculer la masse d'acide citrique pur présent dans le ballon après l'évaporation de l'acétate d'éthyle.
5)	En déduire le pourcentage d'acide citrique pur présent dans le ballon après évaporation.
7)	En fait lors du traitement dans l'ampoule à décanter, la majorité de l'acide citrique reste en phase
	aqueuse ; expliquer pourquoi.